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We demonstrate the lmpliclt finite difference discretizatmn of a higher order parabolic-like 

partial differential equation approxlmatmg the reduced wave equation in the far field and 

show that the dlscretlzatlon 1s unconditionally stable We discuss a method of associating an 

angle of dispersion with parabohc approximations, present an example which can be used to 

compare methods on the basis of dispersion angle, and make comparisons among well-known 

methods and the new method. i_“ 1937 Academic Prsis. Inc 

I. INTRODUCTION 

The technique of approximating the reduced wave equation by a SchrGdinger- 

type partial differential equation (a “parabolic approximation”) is the main tool 
used in the area of underwater acoustics for the modeling of wave propagation over 
long distances in the ocean. This technique has also been utilized in the derivation 
of one-way wave equations to be used as absorbing boundary conditions [2], in 

the study of water waves [S], in seismic waves, in quantum mechanics, and in other 
areas. A significant saving in computer time, memory, and indeed feasibility exists 

in the numerical solution of the parabolic-like Schrodinger equation over that of 
the elliptic reduced wave equation. 

Parabolic partial differential equations approximating the reduced wave equation 
are generally derived via a pseudo-partial differential equation containing a square- 
root operator. The square-root operator is approximated in some fashion and one 
then arrives at the Schriidinger-type partial differential equation. In the context of 
underwater acoustics, historically, the “small angle” parabolic wave equation, 
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recognized as the standard PE, was first introduced by Tappert and Hardin (see. 
e.g., [ 111) and solved by a “split-step” technique utilizing a fast Fourier transform. 
A “wide angle” parabolic wave equation, which in a certain sense encompasses the 
standard PE, was introduced by Claerbout [l] using a rational approximation to 
the square-root operator. Estes and Fain [3] pursued the solution of the wide angle 
equation using a fast Fourier transform approach after expanding the denominator 
of the rational function by an approximating series. Lee and others [j--7] have 
solved the wide angle equation by an implicit finite difference scheme identified as 
the “IFD” model. Greene [4] has also pursued the finite difference approach to the 
wide angle equation. 

The names “small angle” and “wide angle” derive from the use of successively 
better approximations to the square-root operator, name!y a two-term Tay-for 
polynomial and a second-order Pade approximation, and relate the detection of 
energy at successively greater dispersion angles. In this paper we have elected to 
pursue the three-term Taylor (3TT) approximation. The new approximatmg partial 
differential equation is presented, and using implicit finite difference methods the 
corresponding discrete system is derived. The resulting partial differential equation 
is a fourth-order parabolic-like equation. The theoretical development is outlined, 
the numerical stability of the discrete system is proved, the wide angle capabiiity 1s 
discussed, and an exact solution is used as a reference in order to examine the 
accuracy and validity of this new developent and to compare it to existing methods. 

II. A WIDE ANGLE PARABOLIC .~PPRoXIhfATIO~ 

In the context of the usual derivation of a parabolic-like differential equation [IS, 
one obtains a pseudo-partial differential equation of thie form 

t L 
1 ?\ 

II, + it%, ‘I- l+(n’-l)+(l,tk;)$J I ! II = 0, 

with associated boundary conditions U(Y, 0) = 0: and u,(F, B) = 0, for all r > 0 I these 
correspond to pressure release at the ocean surface and a hard bottom), and a 
source condition u( r(,. z ) =J’(r). Here II = tz(r, Z) is the index of refraction and k, is a 
reference wave number. The square-root operator is then approximated Let 
L = (1~~ - 1) + (1 iki)(8’;‘c7?); then the part of the pseudo-partial differen& 
equation in the square-root becomes 1 + L. The classical approximations are 

and 

t”+L=(f+(f/4)L) ’ 
,- (1+3;‘4)L) +OfL3) 
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they yield the “small angle” equation 

(1) 

and the “wide angle” equation 

[1+(1/4jL]u,=+Lu, L=+lj+(l,k;)~> (2) 

respectively. Equation (2) is a third-order mixed partial differential equation arising 
essentially as a result of a third order Taylor approximation (via a Pad6 (l-1) 
rational function approximation). Of course one can use a third-order Taylor 
approximation directly in the approximation of the square-root operator. This is 
the approach we wish to pursue in this development, 

,:rl+L=l+(f)L-(~)L”+O(L3). 

This approximation yields a fourth order partial differential equation 

and in the case of an isotropic medium we obtain 

u, = iko (~T[l-tT]+~[‘-~T]~-~)u. (3) 

See also [9, 121 for additional discussions of higher order parabolic 
approximations. We remark that the coefficient of the L3 term of the error in the 
Pade (l-l ) approximation to ,/E is & and the corresponding coefficient in the 
3TT expansion is A. 

III. FINITE DIFFERENCE DISCRETIZATION 

We shall apply a Crank-Nicolson type method to discretize (3). We shall use a 
rectangular wave guide in (r, 5) space, 0 d I ,< B, and 0 -==I I’~ < r < r d R, z = 0 is the 
ocean surface and z = B the bottom. We choose the standard grid on the wave 
guide, I? = AZ, M AZ = B, 121 an integer, k = Ar, and for z,,, = mh, rn = r. + nk, HZ, n 
integers, t4(r,,, z,) = u;,; thus z. is the surface and z,~, is the bottom. We shall use the 
letter “n” in two different ways, as a counter on the range variable r and to 
designate the index of refraction; the context will make it clear which is intended in 
each case. A standard way in which the Crank-Nicolson approximation is derived 
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for traditional parabolic partial differential equations is to take the average of the 
classical explicit (forward) difference approximation based at the point (I’,,, z,?~) and 
the (backwards) implicit approximation based at (F,!+ i, z,,,). We employ this 
approach here. The discretization is presented for a partial differential equatton of 
the form 

where the coefficients are assumed to be complex valued. We use standard three- 
and live-point centered difference formulas to approximate second and fourth 
derivatives with respect to Z. The resulting linear system has its general equation 
involving five of the unknowns 

HI = 1, 2 ,..., M; n = 1, 2 . . . . . where 

IV. BOUNDARY CONDITIONS AND MATRIX FORWLATION 

It is important to translate the boundary conditions related to the second-order 
derivatives in z in the original problem into corresponding ones for the new 
equation which is a fourth-order equation in 2. The original problem is to solve the 
reduced wave equation (Helmholtz equation in cylindrical coordinates with the @ 
variable suppressed) for an outgoing wave in the far fields with a point source 
driver, i.e., 

with pressure release surface and hard bottom. Here p represents the acoustic 
pressure of a point source located at the point I’ = 0, 2 = 2, in the ocean. Simplified 
equations are obtained from (6) by substituting 

p(r, z) = Lf(r, z) Hb”(k,,r), 

where &l’(r) is the Hankel function of the first kind of order zero, and making 
various approximations to obtain an equation for the envelope U. The far-field 
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approximation (asymptotically approximating the Hankel function) leads to the 
elliptic envelope equation 

$+2ik,,$+~+k~(n’- l)tf=O. 
z2 

The pseudo-partial differential equation is then obtained as an approximation to 
(7). Now the condition U(Y, 0) = 0 for all r implies that all higher order derivatives 
of 14(1., t) with respect to r are also zero at z = 0, it follows on evaluating (7) at (r, 0) 
that u,,(Y, 0) = 0. In addition if one differentiates (7) with respect to z and uses the 
condition u,(P. B) = 0, one obtains u~__(Y, B) = 0 for all I’. Thus in addition to the 
basic boundary conditions 

u( Y, 0) = 0, U,(l’, B) = 0. 

We have inherited boundary conditions 

u,,(r, 0) = 0, 24,,,(1., B) = 0. 

The discretization of these conditions proceeds as follows: u(I., 0) = 0 translates to 
~4; = 0, n x 1, 2,... and introducing the ticticious point u” 1 and a central difference 
to approximate u,-(Y, 0) =O, one obtains u’:, = --uy, n = 1, 2,.... To discretize the 
bottom conditions one introduces the points 24&+ r and ~4’j~+~. Using a central 
difference on u,(r, B) = 0 yields 14:;,+, = u;- ,. It then follows on approximating 
UJT, B) = 0 that u;;~ + z = z4ae2, n = 1, 2 ,.... 

The active unknowns are u;, nz = 1,2 ,.... M. Thus the system of Eqs. (5) needs to 
be modified in its first row and its last two rows to take the boundary conditions 
into consideration. The general system has the form 

where 

A= 

a2 d, a2 e2 

e3 a3 d3 a3 e3 
. . . . . 

. 

. . . 
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and d’, = d, -e,, dtw i = d,- 1 + eM-, , ellf = 2e,, at = 2a,,. The superscripts n 
and n + 1 on A indicate the range points at which the coefficients are tc be 
evaluated. 

In the application to (3) the coefficients in the matrix system are 

Since each of these is a pure imaginary number and the main difference between: the 
left and right sides of (8) is a minus sign, it follows, at least in the case of range 
independence, that in (8) the coefficient of II ‘+ ’ is the complex conjugate of that 
of LO’. 

V. STABILITY 

As a simple illustration, we choose to discuss the stability of the system in the 
homogeneous medium case, i.e., the coefficient functions in (4) are assumed con- 
stant. We shall use the matrix system (8) which encompasses both the system !S) 
and the boundary conditions. We need to show that U” is bounded for ail M = :. II.... 
The coefficient matrix .4 is not symmetric (we are using the term “symmetric” here 
intentionally) as a result of the boundary conditions but we can transform the 
system (8 ) to an equivalent system having symmetric coefficient matrices. Let P be 
the M x M diagonal matrix having diagonal entries Il..... I, I/\!‘?], :hen 
B = PAP ~’ is a symmetric five diagonal matrix. It follows that the system (8) can 
be written in the form 

and thus we have a symmetric problem 

(I- +B) L”‘+ i = (I+ $B) L”! (10) 

where #+l = pm-l$‘+l, Clearly U” is bounded for all n if and only if ~1’~ is. Now ( 10) 
implies that 

and thus to verify stability it suffices to show that li(I- $B))‘(li- iB)ll < 1. 
We shall pursue this in the specific case of the application, namely for the coef- 

ficients in (9). We continue to assume a homogeneous medium, i.e., nfr, 2) constant. 
Recall, we have observed that in this case the coefficient matrices in (8) are complex 
conjugates of each other. The similarity transform P does not disturb this propert? 
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and thus the coefficient matrices in (10) are complex conjugates of each other. In 
fact the matrix B is pure imaginary. Let (10) be written in the form 

(I- iW) u”+ ’ = (I+ iW) ZI”, 

then JY is a real symmetric matrix. Now the matrix ~4 = 1+ i W is normal since 

.z4*xI=(Z+iW)*(l+iW)=(I-iW)(ZfiW)=I+ W2=~319e*. 

But for a nonsingular normal matrix d, each of the eigenvalues of &*-Id has 
magnitude unity and d* ’ d has a complete orthonormal set of eigenvectors, it 
thus follows [lo], on verifying that S! is nonsingular, that 

It is obvious that & and ,aul* are nonsingular since if y is an n-vector of magnitude 
1 such that dy = 0 then 

0 = y *&y = 1 + iy * H,‘y, 

which is impossible since y* I+? is real (recall CI’ is real symmetric). Thus we have 
verified that the CrankmmNicoIson type scheme with boundary conditions for (3) is 
unconditionally stable in the case of a homogeneous medium. 

VI. PROPAGATION ANGLE AND THE EQUATION 

In this section we wish to consider a criterion for determining maximum 
propagation angle associated with a given parabolic approximating partial differen- 
tial equation [4]. (In the next section we will discuss how one can relate angles of 
propagation to a specific solution of (6).) The criterion employs the dispersion 
relation of the reduced wave equation 

kf+kI= 1, 

where k, is the cosine of the angle of propagation, 9, measured from the horizontal 
(thus the full angle of propagation is twice 19) and kz is the cosine of its com- 
plement, k, = sin(@). The question of measuring the maximum angle of propagation 
then is answered by applying the function being used to approximate the square 

- 
root in the dispersion relation, i.e., if g(.u) is being used to approximate ,/ 1 +x, 
s= -kZ= -sin20 then 

k,= +dwzg(-k;), 

and we think ofg( -kl) as an approximation to k,. We then define the approximate 
dispersion relation 

[g(-k:)12+kf= 1 +r, 
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where r is the tolerance. One then takes for the maximum propagation angle. the 
largest angle 0 which satisfies the approximate dipersion relation while maintainmg 
r under a specified tolerance. In the ensuing development we have maintained a 
tolerance of 0.00025. (Of course, using a different tolerance would yield a different 
maximum angle.) The original angle of propagation is given by P = arc tan(k: ,k, ; 
SG the approximate angle of propagation is then given by arc tan(k,;g( - kz)). 

This process yields for the best known approximating functions. namely, that 
used in PE,, 1+ (+) x, a maximum angle of lOa, and mthat used in CvA. ( 1 + ($) s );’ 
(1 + (t) x), an angle of 23’. The three-term Taylor approximation yields 20. 

VII. COMPARISON OF THE METHODS 

We choose to compare the two wide-angle parabolic equations by considering a 
simple problem in a homogeneous medium. The essence of the parabolic method is 
to approximate solutions of the Helmholtz equation (611, so we shall compare how 
well the various parabolic equations approximate in the far field the sum of the 
propagating modes solution of the Helmholtz equation. Since with each such mode 
one can associate a maximum angle of propagation. it is thus possible to compare 
the methods on the basis of size of the maximum angle of propagation which a 
method can detect. 

We shall consider (6) with boundary conditions p(r, 0) = 0 and p&r, B) = 0, along 
with the radiation condition at infinity. Following Ahluwalia and Keller (see, e.g.. 
[O]) the normal mode representation of the solution of (6) is given by 

where H1’ I is the Hankel function, 9,(z) = sin(k, ,. 1 - nf: ). 
[(j+ f)(n/Ok,R)]‘i’ ‘r B is the depth of the flat bottom ocean, 

r:! = i i - 
k, = 27f.‘L.(,,. ; is 

the frequency, c, is the reference sound speed. Here we have taken the index of 
refraction 115 1. We remark that p is the Green’s function for the boundary ,.alue 
problem. 

Now as j increases the argument of the Hankel function eventually becomes 
imaginary and then the terms in the series decay exponentially. This is the con- 
dition which determines the number. N, + 1, of propagating modes, in particular 
N, is the largest integer j for which 

A given propagating mode corresponds to a system of rays propagating with angie 
k0, about the horizontal, where 

I?,=:-tan--’ k a ( o ,;i(j+i)5)- 
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Thus one can associate a maximum angle of propagation, l?,, with any sum of modes 
in which case propagation takes place with angles 8, 101 ,< 13~. 

The test problem we use for purposes of making comparisons is constructed as 
follows. For a given integer N we take as a benchmark solution 

and use f(z) -pN(rO, z)/H~)(k,r,) as a source condition for the parabolic solvers. 
Thus we can speak of N+ 1 modes being propagated, Nd No, with the maximum 
angle of propagation being 8,= n/2 - tan ~‘(koa,vO,/(No + j) q’B) (see Fig. 1). 

We have selected parameters which generally correspond to an underwater 
acoustics application, namely co = 1500m/s, f = 50 Hz (and thus k. = 0.2094), 
B = 400 m, z, = 300 m, r. = 5000 m, and have chosen to monitor the signal at a 
receiver at depth 100 m. This set of parameters yields a total of 27 propagating 
modes, j = 0, l,..., 26. The sum of the first eleven modes corresponds to a maximum 
angle of propagation of 23.19”, and the sum of the first 13 modes corresponds to an 
angle of 27.95”. It is these two cases that we have chosen to examine. We have 
maintained the step sizes in all of the computations at AZ = 1, and dr = 1. If we let 
U(P, z) denote the computed solution then the plotted curves are of the propagation 
loss, 

PL( r, -7) = 10 log,, 
[ 

1 

lu(r 7) HbL)(kor)l’ ’ ,- I 

reflected about the r-axis and relabeled. 
In Fig. 1 a comparison is made between (I), (3), and the benchmark solution 

consisting of the sum of eleven modes, as was anticipated in the forgoing discussion 
(IO” maximum angle and a second-order approximation, as opposed to a 20” 
maximum angle and a third-order approximation); (1) is not comparable in 
accuracy to (3). 

In Fig. 2, we have again used the sum of the first eleven modes to compare (2) 
and (3) against the benchmark. Results are quite good. in general, with (2) having a 
slight edge. 

Finally, in Fig. 3 we have chosen to compare (2) and (3) on the 27.95” solution 
primarily to demonstrate how well the tolerance, 0.00025, predicts the maximum 
angle of propagation associated with an equation. We observe that even though 
both methods are tracking the exact solution quite well, an error of magnitude 
greater than ldb is evident at a number of places and a pronounced phase shift is 
apparent. 
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FIG. 1. Comparison at 23.2”. 
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FIG. 2. Comparison at 23.2” 
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FIG. 3. Compartson at 27 9”. 

VIII. CONCLUSIONS 

The main contribution of this paper is the demonstration of the discretization of 
a higher order parabolic-like partial differential equation which may be useful for 
wide-angle underwater acoustic wave propagation and proof that the numerical 
scheme is unconditionally stable. The discrete equation results in a five-diagonal 
linear system to which we apply an easily implemented five-diagonal solver which is 
very comparable in running time to tri-diagonal solvers. The numerical results are 
similar to those obtained from the best known second-order parabolic 
approximation. 
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